Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mini Rev Med Chem ; 23(8): 953-961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36573057

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly aggressive malignancies and the leading cause of cancer-related deaths. Despite recent advancements, the overall therapeutic responses in PDAC patients remained relatively low or short-lived. While KRAS is the most frequently mutated proto-oncogene and represents a critical driver, it remains challenging to target all mutant variants. Thus, strategies to target the downstream signaling cascades (RAS-RAF-MEK-ERK) in PDAC were associated with improved response rates. Nevertheless, the activation of other oncogenic cascades, such as PI3K/AKT/mTOR, has also been documented within the same context and implicated in the development of acquired tumor resistance mechanisms and/or reduced efficacy of therapeutic agents. Therefore, an in-depth understanding of overlapping and intersecting pathways is required to overcome the tumor resistance mechanisms to devise novel approaches to enhance the effectiveness of ongoing treatment options. The current review highlights the mechanistic insights from cellular and preclinical studies with particular emphasis on KRAS (i.e., MEK and ERK)-based approaches for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Linhagem Celular Tumoral , Mutação , Neoplasias Pancreáticas
2.
Platelets ; 32(7): 960-967, 2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-32835559

RESUMO

Bacterial toxins signaling through Toll-like receptors (TLRs) are implicated in the pathogenesis of many inflammatory diseases. Among the toxins, lipopolysaccharide (LPS) exerts its action via TLR-4 while lipoteichoic acid (LTA) and bacterial lipoproteins such as Braun lipoprotein (BLP) or its synthetic analogue Pam3CSK4 act through TLR-2. Part of the TLR mediated pathogenicity is believed to stem from endogenously biosynthesized platelet-activating factor (PAF)- a potent inflammatory phospholipid acting through PAF-receptor (PAF-R). However, the role of PAF in inflammatory diseases like endotoxemia is controversial. In order to test the direct contribution of PAF in TLR-mediated pathogenicity, we intraperitoneally injected PAF to Wistar albino mice in the presence or absence of bacterial toxins. Intraperitoneal injection of PAF (5 µg/mouse) causes sudden death of mice, that can be delayed by simultaneously or pre-treating the animals with high doses of bacterial toxins- a phenomenon known as endotoxin cross-tolerance. The bacterial toxins- induced tolerance to PAF can be reversed by increasing the concentration of PAF suggesting the reversibility of cross-tolerance. We did similar experiments using human platelets that express both canonical PAF-R and TLRs. Although bacterial toxins did not induce human platelet aggregation, they inhibited PAF-induced platelet aggregation in a reversible manner. Using rabbit platelets that are ultrasensitive to PAF, we found bacterial toxins (LPS and LTA) and Pam3CSK4 causing rabbit platelet aggregation via PAF-R dependent way. The physical interaction of PAF-R and bacterial toxins is also demonstrated in a human epidermal cell line having stable PAF-R expression. Thus, we suggest the possibility of direct physical interaction of bacterial toxins with PAF-R leading to cross-tolerance.


Assuntos
Toxinas Bacterianas/metabolismo , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Transdução de Sinais
3.
Free Radic Biol Med ; 143: 275-287, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31442556

RESUMO

Platelet-activating factor (PAF) is a potent inflammatory agonist. In Swiss albino mice, intraperitoneal injection of PAF causes sudden death with oxidative stress and disseminated intravascular coagulation (DIC), characterized by prolonged prothrombin time, thrombocytopenia, reduced fibrinogen content, and increased levels of fibrinogen degradation products. However, the underlying mechanism(s) is unknown. The PAF-R antagonist WEB-2086 protected mice against PAF-induced death by reducing DIC and oxidative stress. Accordingly, general antioxidants such as ascorbic acid, α-tocopherol, gallic acid, and N-acetylcysteine partially protected mice from PAF-induced death. N-acetylcysteine, a clinically used antioxidant, prevented death in 67% of mice, ameliorated DIC characteristics and histological alterations in the liver, and reduced oxidative stress. WEB-2086 suppressed H2O2-mediated oxidative stress in isolated mouse peritoneal macrophages, suggesting that PAF signaling may be a downstream effector of reactive oxygen species generation. PAF stimulated all three (ERK, JNK, and p38) of the MAP-kinases, which were also inhibited by N-acetylcysteine. Furthermore, a JNK inhibitor (SP600125) and ERK inhibitor (SCH772984) partially protected mice against PAF-induced death, whereas a p38 MAP-kinase inhibitor (SB203580) provided complete protection against DIC and death. In human platelets, which have the canonical PAF-R and functional MAP-kinases, JNK and p38 inhibitors abolished PAF-induced platelet aggregation, but the ERK inhibitor was ineffective. Our studies identify p38 MAP-kinase as a critical, but unrecognized component in PAF-induced mortality in mice. These findings suggest an alternative therapeutic strategy to address PAF-mediated pathogenicity, which plays a role in a broad range of inflammatory diseases.


Assuntos
Morte Súbita/prevenção & controle , Inibidores Enzimáticos/farmacologia , Estresse Oxidativo , Fator de Ativação de Plaquetas/toxicidade , Substâncias Protetoras/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Acetilcisteína/farmacologia , Animais , Morte Súbita/etiologia , Morte Súbita/patologia , Feminino , Sequestradores de Radicais Livres/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
4.
J Pharmacol Exp Ther ; 364(1): 1-12, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29054858

RESUMO

Acquired tumor resistance to cancer therapies poses major challenges in the treatment of cancers including melanoma. Among several signaling pathways or factors that affect neocarcinogenesis, cancer progression, and therapies, altered microRNAs (miRNAs) expression has been identified as a crucial player in modulating the key pathways governing these events. While studies in the miRNA field have grown exponentially in the last decade, much remains to be discovered, particularly with respect to their roles in cancer therapies. Since immune and nonimmune signaling cascades prevail in cancers, identification and evaluation of miRNAs, their molecular mechanisms and cellular targets involved in the underlying development of cancers, and acquired therapeutic resistance would help in devising new strategies for the prognosis, treatment, and an early detection of recurrence. Importantly, in-depth validation of miRNA-targeted molecular events could lead to the development of accurate progression-risk biomarkers, improved effectiveness, and improved patient responses to standard therapies. The current review focuses on the roles of miRNAs with recent updates on regulated cell cycle and proliferation, immune responses, oncogenic/epigenetic signaling pathways, invasion, metastasis, and apoptosis, with broader attention paid to melanomagenesis and melanoma therapies.


Assuntos
Melanoma/genética , MicroRNAs/genética , Terapêutica com RNAi/métodos , Animais , Humanos , Melanoma/terapia , MicroRNAs/metabolismo
5.
Mol Med Rep ; 12(1): 394-400, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25695262

RESUMO

Melanoma cells often express platelet-activating factor receptor (PAF-R), which has been demonstrated to increase metastatic behavior. However, the effect of PAF-R on the responsiveness of melanoma to naturally occurring cytotoxic agents remains to be elucidated. The present study aimed to determine the relative cytotoxicity and mechanism of benzyl isothiocyanate (BITC), a component of cruciferous vegetables, in melanoma cells expressing PAF-R. To evaluate the importance of PAF-R signaling in melanoma cell growth, PAF-R-negative murine B16F10 cells were transduced with a retrovirus containing the cDNA for PAF-R to generate cells stably expressing PAF-R (B16-PAF-R) or an empty vector (MSCV) to generate PAF-R-deficient B16-MSCV control cells. Activation of PAF-R, using the PAF-R agonist, 1-hexadecyl-2-N-methylcarbamoyl-3-glycerophosphocholine, induced an increase in the proliferation of B16-PAF-R cells compared with the B16-MSCV cells. Reverse transcription quantitative polymerase chain reaction revealed the presence of functional PAF-R in human melanoma SK23MEL cells, but not in SK5MEL cells. The present study investigated the effect of BITC treatments on the survival of murine and human melanoma cells, in the presence or absence of functional PAF-R. The results revealed that treatment with BITC decreased the survival rate of the PAF-R-positive and negative murine and human melanoma cells. However, the expression of PAF-R substantially augmented BITC-mediated cytotoxicity in the PAF-R-positive cells at lower concentrations compared with the PAF-R-negative cells. In order to determine the underlying mechanism, flow cytometric analysis was used, which demonstrated a significant increase in the generation of reactive oxygen species (ROS) in the B16-PAF-R cells compared with the B16-MSCV cells, which enhanced apoptosis by BITC, as measured by increased caspase-3/7 luminescence. Notably, the BITC-mediated decreased cell survival rate, increased ROS and increased apoptosis in the B16-PAF-R cells were significantly attenuated by the antioxidant, vitamin C, indicating ROS involvement. Additionally, the WEB2086 PAF-R antagonist, inhibited the BITC-mediated enhancement of apoptosis in the B16-PAF-R cells, indicating a role for PAF-R-signaling in the BITC-mediated effects. These findings indicated that the selectivity of BITC towards PAF­R in melanoma offers a promising chemopreventive agent for PAF-R-positive melanoma treatment.


Assuntos
Apoptose/efeitos dos fármacos , Isotiocianatos/toxicidade , Melanoma/patologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Azepinas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Camundongos , Fator de Ativação de Plaquetas/análogos & derivados , Fator de Ativação de Plaquetas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Triazóis/farmacologia
6.
Front Biosci (Elite Ed) ; 1(2): 568-76, 2009 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-19482673

RESUMO

Increase in systemic toxicity and resistance are the major drawbacks of radiation therapy in the treatment of pancreatic cancer. We have shown previously that BITC inhibits the growth of human pancreatic cancer cells and induces apoptosis. Here we determined whether BITC could sensitize BxPC-3 cells and increase the therapeutic potential of gamma-irradiation. Cells were pretreated with 2.5 microM BITC for 24h followed by exposure to 5 Gy of gamma-irradiation and were allowed to grow for another 24 or 48 h before being analyzed. Combination of BITC and gamma-irradiation significantly reduced survival of cells and caused significantly enhanced arrest of cells in G2/M phase as compared to cells exposed to gamma-irradiation alone. G2/M arrest was associated with DNA damage leading to the phosphorylation of ATR (Ser-428), Chk2 (Thr-68), Cdc25C (Ser-216), Cdk-1 (Tyr-15) and induction of p21Waf1/Cip1. However, combination treatment after 48 h caused 2.8-fold increase in apoptosis in BxPC-3 cells. Apoptosis at 48 h was associated with NF-kappa B inhibition and p38 activation. Taken together, results of the present study suggest that the apoptosis-inducing effect of gamma-irradiation can be increased by BITC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Raios gama/uso terapêutico , Isotiocianatos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Tolerância a Radiação/efeitos dos fármacos , Apoptose/efeitos da radiação , Western Blotting , Carcinoma/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Fase G2/efeitos da radiação , Humanos , Masculino , NF-kappa B/metabolismo , Neoplasias Pancreáticas/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...